
F92

Resin-molded Chip, Compact Series

• Compliant to the RoHS directive (2002/95/EC).

■ Marking **Rated capacitance code Rated capacitance (μF) P Case A Case B Case G226 \oplus Rated voltage Rated capacitance (Voltage code) (Capacitance code) Rated voltage (V) 10V A 16V C 2.5V e 25V G

* * Capacitance code of "P" case products are as shown below.

■ Specifications

20V D

6.3V

Specifications						
Item	Performance	Characteristics				
item	P Case	A • B Case				
Category Temperature Range	-55 to +125°C (Rated temperature : 85°C)					
Capacitance Tolerance	±20% (at 120Hz)					
Dissipation Factor (120Hz)	Refer to Next Page					
ESR (100kHz)	Refer to Next Page					
Leakage Current	After 1 minute's application of rated voltage, leakage current at 20°C is not more than 0.01CV or 0.5µA, whichever is greater. After 1 minute's application of rated voltage, leakage current at 85°C is not more than 0.1CV or 5µA, whichever is greater. After 1 minute's application of derated voltage, leakage curren at 125°C is not more than 0.125CV or 6.3µA, whichever is greater.					
Capacitance Change by Temperature	+20% Max. (at +125°C) +15% Max. (at +85°C) -15% Max. (at -55°C)	+15% Max. (at +125°C) +10% Max. (at +85°C) -10% Max. (at -55°C)				
	At 40°C 90 to 95% R.H. 500 hours (No voltage applied)					
Damp Heat (Steady State)	Capacitance Change Refer to next page (* 1) Dissipation Factor150% or less than the initial specified value Leakage Current Initial specified value or less	Refer to next page (* 1) Initial specified value or less Initial specified value or less				
	-55°C / +125°C 30 minutes eac	h 5 cycles				
Temperature Cycles	Capacitance Change Refer to next page (* 1) Dissipation Factor150% or less than the initial specified value Leakage Current Initial specified value or less	Refer to next page (* 1) Initial specified value or less Initial specified value or less				

Standard Ratings

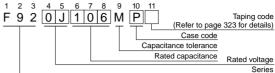
100

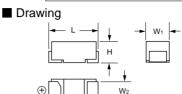
150

220

107

157


227


А • В

В

(B)

туре) []	urr	IDE	111	ıg	Sys	ste	m (⊏Xä	ampie:	6.3V	τυμΕ)

Dimensions

ı	1611310113					(mm)
	Case code	L	W ₁	W ₂	Н	S
	Р	2.0 ± 0.2	1.25 ± 0.1	0.9 ± 0.1	1.1 ± 0.1	0.5 ± 0.2
	Α	3.2 ± 0.2	1.6 ± 0.2	1.2 ± 0.1	1.1 ± 0.1	0.8 ± 0.2
	В	3.4 ± 0.2	2.8 ± 0.2	2.3 ± 0.1	1.1 ± 0.1	0.8 ± 0.2

	В	3.4 ± 0.2	2.8 ± 0.2	2.3 ± 0.1	1.1 ± 0.1	0.8 ± 0.2			
		10 secor	nds reflow a	t 260°C, 5 s	econds imn	nersion at 26	90°C		
	Resistance to Soldering Heat		nce Chang o next page on Factor… n the initial spe Current… pecified val	(* 1) 150% of ecified value	Refer to next page (* 1) Initial specified value or less Initial specified value or less				
		resistor at successiv	After application of surge voltage in series with a 33 Ω (For "P" case : 1k Ω) resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors meet the characteristics requirements listed below.						
Surge*			ance Chang o next page		Refer to n	ext page (*	1)		
		Dissipati less than Leakage	on Factor the initial spe Current	150% or cified value	Initial spec	cified value of	or less		
			pecified value		<u> </u>	cified value o			
Endurand	ce*	rated vol 3Ω resis voltage i resistor a meet the requirem Capacita Refer to Dissipati less thar Leakage	Dohours' applitage in series of a 85°C, can be characteristed lance Change on ext page on Factor In the initial spec Current ecified value	es with a or derated in a 3Ω pacitors stic below. e···· (* 1) 150% or ceified value	After 2000hours' application rated voltage in series with a 3Ω resistor at 85°C, or deratt voltage in series with a 3Ω resistor at 125°C, capacitors meet the characteristic requirements listed below. Capacitance Change··· Refer to next page (* 1) Dissipation Factor··· Initial specified value or less Leakage Current··· Initial specified value or less that the series of the				
Shear Te	est	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.							
Terminal	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of the capacitor, pressure strength is applied with a specified jig at the center of the substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.				ite				

^{*} As for the surge and derated voltage at 125°C, refer to page 322 for details.

	V	4	6.3	10	16	20	25	35	* *
Cap. (µF)	Code	0G	0J	1A	1C	1D	1E	1V	Capacitance code
0.22	224							Α	J
0.33	334							Α	N
0.47	474				Р	P•A		Α	S
0.68	684				Р	Α			W
1	105			Р	P	P•A	P•A	Α	A
1.5	155			Р	Р	Α			E
2.2	225		Р	Р	P•A	(P) • A	A • B	В	J
3.3	335	Р	Р	P•A	Α			В	N
4.7	475	Р	Р	P•A	(P) • A • B	A • B	A • B		S
6.8	685	Р	Р	P•A	В				w
10	106	P•A	P•A	P•A	A • B	В			а
15	156	Р	P•A	Α					е
22	226	P•A	P•A	A • B	В				J
33	336	P•A	Α·Β	В					n
47	476	(P) • A • B	A • B	В					s
68	686	A • B							

^() The series in parentheses are being developed. Please contact to your local Nichicon sales office when these series are being designed in your application.

F92

■ Standard Ratings

Rated Volt	Rated Capacitance (µF)	Case code	Part Number	Leakage Current (µA)	Disspation Factor (%@120Hz)	ESR (Ω@100kHz)	*1 ∆C/ (%
	3.3	Р	F920G335MPA	0.5	8	12.0	*
	4.7	Р	F920G475MPA	0.5	8	6.0	*
	6.8	Р	F920G685MPA	0.5	10	6.0	*
	10	Р	F920G106MPA	0.5	10	6.0	*
	10	Α	F920G106MAA	0.5	8	4.0	*
	15	Р	F920G156MPA	0.6	10	5.0	*
	22	Р	F920G226MPA	0.9	20	5.0	*
	22	Α	F920G226MAA	0.9	12	2.8	*
4V	33	P	F920G336MPA	1.3	20	4.0	*
- v	33	A	F920G336MAA	1.3	12	2.8	*
	47	A		1.9			*
			F920G476MAA		18	2.8	
	47	В.	F920G476MBA	1.9	12	1.7	*
	68	Α	F920G686MAA	2.7	25	2.8	±1
	68	В	F920G686MBA	2.7	18	1.5	*
	100	Α	F920G107MAA	4.0	30	2.8	±1
	100	В	F920G107MBA	4.0	18	1.3	*
	150	В	F920G157MBA	6.0	25	1.3	±1
	2.2	Р	F920J225MPA	0.5	8	12.0	*
	3.3	Р	F920J335MPA	0.5	8	12.0	*
	4.7	Р	F920J475MPA	0.5	8	6.0	*
	6.8	Р	F920J685MPA	0.5	10	6.0	*
	10	Р	F920J106MPA	0.6	10	6.0	*
	10	Α	F920J106MAA	0.6	8	4.0	*
	15	Р	F920J156MPA	0.9	10	6.0	*
6.3V	15	A	F920J156MAA	0.9	8	4.0	*
0.5 v	22	P	F920J226MPA	1.4	20	5.0	
				1.4			*
	22	A	F920J226MAA		12	2.8	'
	33	A	F920J336MAA	2.1	12	2.8	*
	33	В	F920J336MBA	2.1	12	1.7	*
	47	Α	F920J476MAA	3.0	18	2.8	±1
	47	В	F920J476MBA	3.0	12	1.7	*
	100	В	F920J107MBA	6.3	20	1.3	±1
	1	Р	F921A105MPA	0.5	8	12.0	*
	1.5	Р	F921A155MPA	0.5	8	12.0	*
	2.2	Р	F921A225MPA	0.5	8	12.0	*
	3.3	Р	F921A335MPA	0.5	8	12.0	*
	3.3	Α	F921A335MAA	0.5	6	7.0	*
	4.7	P	F921A475MPA	0.5	8	6.0	
	4.7	A	F921A475MAA	0.5	6	4.0	*
	6.8	P	F921A685MPA	0.7	8	6.0	*
10∨		· ·					
	6.8	A	F921A685MAA	0.7	6	4.0	*
	10	P .	F921A106MPA	1.0	14	6.0	*
	10	Α	F921A106MAA	1.0	8	4.0	*
	15	Α	F921A156MAA	1.5	8	4.0	*
	22	Α	F921A226MAA	2.2	14	4.0	±1
	22	В	F921A226MBA	2.2	8	1.9	*
	33	В	F921A336MBA	3.3	12	1.9	*
	47	В	F921A476MBA	4.7	18	1.9	±1
	0.47	Р	F921C474MPA	0.5	8	20.0	*
	0.68	Р	F921C684MPA	0.5	8	12.0	*
	1	Р	F921C105MPA	0.5	8	12.0	*
	1.5	Р	F921C155MPA	0.5	8	12.0	*
	2.2	Р	F921C225MPA	0.5	8	12.0	*
	2.2	Α	F921C225MAA	0.5	6	7.0	*
16V	3.3	Α	F921C335MAA	0.5	6	7.0	*
	4.7	A	F921C475MAA	0.8	6	7.0	*
	4.7	В	F921C475MBA	0.8	6	3.0	*
							1
	6.8	В	F921C685MBA	1.1	6	3.0	
	10	A	F921C106MAA	1.6	8	7.0	±1
	10	В	F921C106MBA	1.6	6	2.0	*
	22	В	F921C226MBA	3.5	12	2.0	±1

Rated Volt	Rated Capacitance (µF)	Case code	Part Number	Leakage Current (µA)	Disspation Factor (%@120Hz)	ESR (Ω@100kHz)	*1 ∆C/C (%)
	0.47	Р	F921D474MPA	0.5	8	20.0	*
	0.47	Α	F921D474MAA	0.5	4	10.0	*
	0.68	Α	F921D684MAA	0.5	4	10.0	*
	1	Р	F921D105MPA	0.5	8	20.0	*
2017	1	Α	F921D105MAA	0.5	4	10.0	*
20V	1.5	Α	F921D155MAA	0.5	6	7.4	*
	2.2	Α	F921D225MAA	0.5	6	7.0	*
	4.7	Α	F921D475MAA	0.9	10	7.0	±10
	4.7	В	F921D475MBA	0.9	6	3.0	*
	10	В	F921D106MBA	2.0	8	3.0	±10
	1	Р	F921E105MPA	0.5	8	20.0	*
	1	Α	F921E105MAA	0.5	6	10.0	*
05)/	2.2	Α	F921E225MAA	0.6	8	10.0	±15
25V	2.2	В	F921E225MBA	0.6	6	4.0	*
	4.7	Α	F921E475MAA	1.2	10	7.0	±10
	4.7	В	F921E475MBA	1.2	6	3.0	*
	0.22	Α	F921V224MAA	0.5	4	10.0	*
	0.33	Α	F921V334MAA	0.5	4	10.0	*
35V	0.47	Α	F921V474MAA	0.5	4	10.0	*
35 V	1	Α	F921V105MAA	0.5	6	10.0	*
	2.2	В	F921V225MBA	0.8	6	4.0	±10
	3.3	В	F921V335MBA	1.2	10	4.0	±1(

1 : \(\Delta C/C \) Marked ""

Item	P Case (%)	A, B Case(%)
Damp Heat	±20	±10
Tempereature cycles	±10	± 5
Resistance soldering heat	±10	± 5
Surge	±10	± 5
Endurance	±10	±10

We can consider the type of compliance to AEC-Q200. Please contact to your local Nichicon sales office when these series are being designed in your application.